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Federated Averaging (FedAvg)

Communication-Efficient Learning of Deep Networks from Decentralized Data
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Communication-Efficient Learning of Deep Networks
from Decentralized Data

H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson Blaise Agiiera y Arcas
Google, Inc., 651 N 34th St., Seattle, WA 98103 USA

Abstract

Modern mobile devices have access to a wealth
of data suitable for learning models, which in turn
can greatly improve the user experience on the
device. For example, language models can im-
prove speech recognition and text entry, and im-
age models can automatically select good photos.
However, this rich data is often privacy sensitive,
large in quantity, or both, which may preclude
logging to the data center and training there using
conventional approaches. We advocate an alter-
native that leaves the training data distributed on
the mobile devices, and learns a shared model by
aggregating locally-computed updates. We term
this decentralized approach Federated Learning.
‘We present a practical method for the federated
learning of deep networks based on iterative
model averaging, and conduct an extensive empiri-
cal evaluation, considering five different model ar-
chitectures and four datasets. These experiments
demonstrate the approach is robust to the unbal-
anced and non-IID data distributions that are a
defining characteristic of this setting. Commu-
nication costs are the principal constraint, and
‘we show a reduction in required communication
rounds by 10-100x as compared to synchronized
stochastic gradient descent.

promise of greatly improving usability by powering more
intelligent applications, but the sensitive nature of the data
means there are risks and responsibilities to storing it in a
centralized location.

‘We investigate a learning technique that allows users to
collectively reap the benefits of shared models trained from
this rich data, without the need to centrally store it. We term
our approach Federated Learning, since the leamning task is
solved by a loose federation of participating devices (which
we refer to as clients) which are coordinated by a central
server. Each client has a local training dataset which is
never uploaded to the server. Instead, each client computes
an update to the current global model maintained by the
server, and only this update is communicated. This is a
direct application of the principle of focused collection or
data minimization proposed by the 2012 White House report
on privacy of consumer data [39). Since these updates are
specific to improving the current model, there is no reason
to store them once they have been applied.

A principal advantage of this approach is the decoupling of
model training from the need for direct access to the raw
training data. Clearly, some trust of the server coordinat-
ing the training is still required. However, for applications
where the training objective can be specified on the basis
of data available on each client, federated leamning can sig-
nificantly reduce privacy and security risks by limiting the
attack surface to only the device, rather than the device and
the cloud.

Federated
Averaging

Distributed
Optimization

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Aguera y Arcas, B. (2017). Communication-efficient learning of deep networks from decentralized data.

In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), JIMLR: W&CP, 54.
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> FedSGD: Local update & communication 12

communication cost

» FedAvg: Local update E 2|2 communication 12

partial participation
» &% local update 5= 7|F, communication 3= 1/EE Z4

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, I is the number
of local epochs, and 7 is the learning rate.
Server executes:
initialize wyq
for eachroundt =1,2,... do
m + max(C - K, 1)

S; « (random set of m clients) e ¢: 0l roundO}CH &GSt 2 20| E H|2 (Partial Participation)
for each client £ € S; in parallel do
wf,, < ClientUpdate(k, w;) e L DH roundl:l|-|:|- '6_'||-§'6|-E local epoch _JI\_
me < EkESt Tk
Wert ¢ Yges, miwfyy // Erratum® * B: O{ local epochO}C} H&5 04| AFHESH= local mini-batch =27 |

ClientUpdate(k, w): // Run on client k
B <+ (split Py, into batches of size B)
for each local epoch ¢ from 1 to £ do

for batch b € Bdo
w4+ w —nVE(w;b)
return w to server
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< Experiments
> olo|H ml2t0[E ¢, E, BE O{EA| 2ddliof 5t=7]?

* C: O roundBtt F 02 2210| Y E B|& (Partial Participation)
* E:O0f roundOtC} SF&55H= local epoch =

* B: Ol local epochBC} 250 AFESH= local mini-batch 37|

ok

2NN IID NoON-IID
0.0 1455 316 4278 3275
o 0.1 1474 (1.0x)  87(3.6x) 1796 (2.4x) 664 (4.9x)
Test accuracy 37% 0.2 1658 (0.9x) 77 (4.1x) 1528 (2.8x) 619 (5.3x)
= = round 0.5 — (=)  75(4.2x) — (=) 443 (7.4%)
1.0 — (=) 70 (4.5x) — (=) 380 (8.6x)
CNN,.E =5
0.0 387 50 1181 956
0.1 339(1.1x)  18(2.8x) 1100 (1.1x) 206 (4.6x)
Test accuracy 99% 0.2 337 (1.1x)  18(2.8x) 978 (1.2x) 200 (4.8x)
£ 2 round 0.5 164 (2.4x) 18 (2.8x) 1067 (1.1x) 261 (3.7x)
1.0 246 (1.6x) 16 (3.1x) — (=) 97 (9.9x)
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Federated Averaging (FedAvg)

Communication-Efficient Learning of Deep Networks from Decentralized Data

< Experiments
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Federated Averaging (FedAvg)

Communication-Efficient Learning of Deep Networks from Decentralized Data
< Experiments
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Federated Averaging (FedAvg)
Communication-Efficient Learning of Deep Networks from Decentralized Data
< Discussion
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Federated Optimization in Heterogeneous Networks
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FEDERATED OPTIMIZATION IN HETEROGENEOUS NETWORKS

Tian Li' Anit Kumar Sahu? Manzil Zaheer ' Maziar Sanjabi* Ameet Talwalkar ' Virginia Smith '

ABSTRACT

Federated Learning is a distri d learning paradigm with two key chall that diffe iate it from traditional
distributed optimization: (1) significant variability in terms of the systems characteristics on each device in
the network (systems h ), and (2) identically distrit data across the network (statistical
heterogeneity). In this work, we introduce a framework, FedP rox, to tackle heterogeneity in federated networks.
FedProx can be viewed as a g i and re-p ization of FedAvg, the current state-of-the-art
method for federated learning. While this re-parameterization makes only minor modifications to the method
itself, these modifications have impx ifications both in theory and in practice. Theoretically, we provide

2 g for our fi k when learning over data from identical distributions (statistical
geneity), and while ing to device-level systems ints by ing each participating device to
perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedP rox allows
for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly
heterogeneous settings, FedProx demonstrate nificantly more stable and accurate convergence behavior
relative to FedAvg—improving absolute test accuracy by 22% on average,

1 INTRODUCTION

dient descent (SGD) on K devices—where E is a small
constant and K is a small fraction of the total devices in
the network. The devices then communicate their model

d learning has d as an

for distributing training of machine learning models in net-
works of remote devices. While there is a wealth of work
on distributed optimization in the context of machine learn-
ing, two key challenges distinguish federated learning from

litional distributed optimization: high degrees of systems
and statistical heterogeneity' (McMahan et al,, 2017; Li
etal, 2019).

In an attempt to handle heterogeneity and tackle high com-
munication costs, optimization methods that allow for lo-
cal updating and low p ipation are a popular app h
for federated learning (McMahan et al., 2017; Smith et al.,
2017). In particular, FedAvg (McMahan et al., 2017) is
an iterative method that has emerged as the de facto opti-
mization method in the federated setting. At each iteration,
FedAvg first locally performs £ epochs of stochastic gra-

updates to a central server, where they are averaged.

While FedAvg has demonstrated empirical success in het-
erogeneous settings, it does not fully address the underlying

hall iated with h geneity. In the context
of systems heterogeneity, FedAvg does not allow partici-
pating devices to perform variable amounts of local work
based on their underlying systems constraints; instead it
is common to simply drop devices that fail to compute £
epochs within a specified time window (Bonawitz et al.,
2019). From a statistical perspective, FedAvg has been
shown to diverge empirically in settings where the data is
non-identically distributed across devices (e.g., McMahan
etal., 2017, Sec 3). Unfortunately, FedAvq is difficult to
analyze theoretically in such realistic scenarios and thus
lacks convergence guarantees to characterize its behavior

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks.

Proceedings of Machine Learning and Systems(MLSys), 2, 429-450.
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Federated Optimization in Heterogeneous Networks
% FedAvg SHAIH
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[1] https://ar5iv.labs.arxiv.org/html/2103.00710

[2] https://www.researchgate.net/figure/Stragglers-impact-on-FL-performance-In-synchronous-FL-all-clients-wait-for-the_fig1_372163244
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Federated Optimization in Heterogeneous Networks
< Proximal Term & y¥-inexact Solution
> 5 OIEA Cht meiy

® Proximal Tem: 2Z Rt 228 3 & 7t X}0|E AKX » EH X 0|2 |
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< Proximal Term & y¥-inexact Solution
= o|ElAdof| CHSH ok
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min hg(w; w;) = Fi(w) + gHw — "Ut||2

v
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Federated Optimization in Heterogeneous Networks
< Proximal Term & y¥-inexact Solution

> I O|Zl/doj Cist 22k
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-
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Federated Optimization in Heterogeneous Networks

< Proximal Term & y¥-inexact Solution
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Federated Optimization in Heterogeneous Networks

< Proximal Term & y¥-inexact Solution
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Federated Optimization in Heterogeneous Networks
< FedProx ¥12|&

> FedAvg Z12|Z0|M E (ocal trein epoch ) CHA| — 1,

Algorithm 1 Federated Averaging (FedAvq) Algorithm 2 FedProx (Proposed Framework)
Input: K, T, 7,[E)w’, N,pr, k=1,--- ,N Input: K, T, v,Ju®, N, pp, k=1,--- ,N
fort=0,---,T—1do fort=20,---,T—1do
Server selects a subset S; of K devices at random (each Server selects a subset S; of K devices at random (each
device k is chosen with probability@) device k is chosen with probability pg)
Server sends w! to all chosen devices Server sends w! to all chosen devices
Each device k € S; updates w* for E epochs of SGD Each chosen device k € S; finds a wi
on Fy, with step-size 1 to obtain w} which is a |y-inexact minimizer| of: w. = =
Each device k € S; sends wi " back to the server arg min,, hg(w; w*) = Fp(w) + 5|lw — w*||*
Server aggregates the w’s as w*™ =[ 2|37, g, wi™ Each device k € S; sends w}, " back to the server
end for Server aggregates the w’s as w't' = £ >, .o w
end for
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Federated Optimization in Heterogeneous Networks

< Convergence Analysis

> FedProx Al A, total Loss f(w) 7} Z|£3t O &2 sHES Y
Definition. B-local dissimilarity

By, [[IVEL(w)*] = [IV.f(w)]|* B(w)®
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Federated Optimization in Heterogeneous Networks

< Convergence Analysis
> FedProx AIE Al, total Loss f(w) 7} %2t F o2 T

Definition. B-local dissimilarity

By, [[IVEL(w)*] = [IV.f(w)]|* B(w)®
Er, [IIVFi(w)|I*] = [Ex [VFi(w)] [|*B(w)*
v
=Lt FAH
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Federated Optimization in Heterogeneous Networks

< Convergence Analysis

> FedProx A2 A, total Loss f(w) 7| X|£3t FO 2 B2 Y
Definition. B-local dissimilarity
Ey [[IVFL(w)|]?] = [V f(w)]]* B(w)?
Assumption. Bounded dissimilarity

B(w) < B
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Federated Optimization in Heterogeneous Networks

< Convergence Analysis

> FedProx AF2 A|, total Loss f(w) 7} |2 FO2 HetS Y
Definition. B-local dissimilarity Theorem 1. Non-convex FedProx convergence
Ey, [IIVFe(w)|I*] = IV f(w)|[*B(w)* Es, [f(we)] < flwe) — §||Vf(wt)||2
Assumption. Bounded dissimilarity B, 1, vOfl CHSH 6E
p>0g M, =3
B(w) < B
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Federated Optimization in Heterogeneous Networks

< Convergence Analysis

> FedProx Al A, total Loss f(w) 7} Z|£3t O &2 sHES Y
Definition. B-local dissimilarity Theorem 1. Non-convex FedProx convergence

E [[IVE:(w)[*] = [V f(w)]* B(w)? Es, [f(we+1)] < flwe) = plVf(we)]?

Assumption. Bounded dissimilarity
Theorem 2. Convergence rate

B(w) < B .

= S E[IVS )] <
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Federated Optimization in Heterogeneous Networks

< Experiments
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< Experiments
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ABSTRACT

Federated learning enables a large amount of edge computing devices to jointly
learn a model without data sharing. As a leading algorithm in this setting, Federated
Averaging (FedAvq) runs Stochastic Gradient Descent (SGD) in parallel on a small
subset of the total devices and averages the sequences only once in a while. Despite
its simplicity, it lacks theoretical guarantees under realistic settings. In this paper,
we analyze the convergence of FedAvg on non-iid data and establish a convergence
rate of O(4:) for strongly convex and smooth problems, where T is the number of
SGDs. Importantly, our bound demonstrates a trade-off between communication-
efficiency and convergence rate. As user devices may be disconnected from
the server, we relax the assumption of full device participation to partial device
participation and study different averaging schemes; low device participation rate
can be achieved without severely slowing down the learning. Our results indicates
that heterogeneity of data slows down the convergence, which matches empirical
observations. Furthermore, we provide a necessary condition for FedAvg on
non-iid data: the learning rate i must decay, even if full-gradient is used; otherwise,
the solution will be () away from the optimal.

69

Li, X, Huang, K., Yang, W., Wang, S., & Zhang, Z. (2020). On the convergence of FedAvg on non-IID data.
International Conference on Learning Representations (ICLR).
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On the Convergence of FedAvg on Non-IID Data
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On the Convergence of FedAvg on Non-IID Data

< 7I'AE-|
> FedProx2t= E2|, convexityOll CHSH 7Y ZEX)
> DNN X -£0] 3tA| (Non-convex)

Assumptions

Assumption 1: smoothness
T L 2
Fi(v) = Fi(w) < (v —w)" VE(w) + 5 [lv = wl3.
Assumption 2: strong convexity
Fi(v) = Fi(w) > (v = w)"VFi(w) + Sllo = wll.

Assumption 3: Bounded Variance

El|IVFi(wl. &) — VF:(wh)]?] <pE]

Assumption 4: Uniformly Bounded Squared Expectation

E[||V Fy (wh, €0)11°] <[G
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< Partial Participation
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Convergence of FedAvg

On the Convergence of FedAvg on Non-IID Data
< Partial Participation
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On the Convergence of FedAvg on Non-IID Data
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